Trimodally porous SnO_{2} nanospheres for highly sensitive gas sensing of ethanol

Ji-Wook YOON¹, Seung Ho CHOI ${ }^{1}$, Jun-Sik KIM ${ }^{1}$, Ho Won JANG², Yun Chan KANG ${ }^{1}$ and Jong-Heun LEE ${ }^{1, *}$
${ }^{1}$ Department of Materials Science \& Engineering, Korea University, Seoul 136-713, Korea
${ }^{2}$ Deparment of Materials Science \& Engineering, Seoul National University, Seoul 151-744, Korea

Introduction (Applications)

Introduction (Gas sensors)

Excellent platform
for highly sensitive and selective gas sensors ($S=R_{d} / R_{g}$ or R_{g} / R_{a})

Porous
structures

Reaction between analyte gas and sensing material can be enhanced!

Introduction (Pore size effects)

High surface area
Low gas accessibility

Macropores
$>50 \mathrm{~nm}$
Molecular diffusion
(> 100 nm)

Porous materials with multimodal pores are advantageous for gas sensing !

Introduction (This work)

Suggestion of a new and novel porous structure for ultrasensitive gas sensing !

